from typing import List, Optional, Tuple, Union
import torch
from torch import Tensor
from torch_geometric.utils.num_nodes import maybe_num_nodes
[docs]def k_hop_subgraph(
node_idx: Union[int, List[int], Tensor],
num_hops: int,
edge_index: Tensor,
relabel_nodes: bool = False,
num_nodes: Optional[int] = None,
flow: str = 'source_to_target',
directed: bool = False,
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""
Extracts the k-hop subgraph around a given node or a list of nodes.
Args:
node_idx (Union[int, List[int], Tensor]): The central node or a list of central nodes.
num_hops (int): The number of hops to consider.
edge_index (Tensor): The edge indices of the graph.
relabel_nodes (bool, optional): If True, the nodes will be relabeled to a contiguous range. Defaults to False.
num_nodes (Optional[int], optional): The number of nodes in the graph. Defaults to None.
flow (str, optional): The flow direction ('source_to_target', 'target_to_source', 'bidirectional'). Defaults to 'source_to_target'.
directed (bool, optional): If True, the graph is treated as directed. Defaults to False.
Returns:
Tuple[Tensor, Tensor, Tensor, Tensor]: The node indices, the edge indices, the indices of the original nodes, and the edge mask.
"""
num_nodes = maybe_num_nodes(edge_index, num_nodes)
assert flow in ['source_to_target', 'target_to_source', 'bidirectional'], "Invalid flow direction"
if flow == 'target_to_source':
row, col = edge_index
elif flow == 'source_to_target':
col, row = edge_index
else:
col, row = torch.concat([edge_index, edge_index[[1, 0]]], dim=1)
node_mask = row.new_empty(num_nodes, dtype=torch.bool)
edge_mask = row.new_empty(row.size(0), dtype=torch.bool)
if isinstance(node_idx, (int, list, tuple)):
node_idx = torch.tensor([node_idx], device=row.device).flatten()
else:
node_idx = node_idx.to(row.device)
subsets = [node_idx]
for _ in range(num_hops):
node_mask.fill_(False)
node_mask[subsets[-1]] = True
torch.index_select(node_mask, 0, row, out=edge_mask)
subsets.append(col[edge_mask])
subset, inv = torch.cat(subsets).unique(return_inverse=True)
inv = inv[:node_idx.numel()]
node_mask.fill_(False)
node_mask[subset] = True
if flow == 'bidirectional':
col, row = edge_index
if not directed:
edge_mask = node_mask[row] & node_mask[col]
edge_index = edge_index[:, edge_mask]
if relabel_nodes:
edge_index = relabel_graph(subset, edge_index, num_nodes)
return subset, edge_index, inv, edge_mask
[docs]def relabel_graph(subset: Tensor, edge_index: Tensor, num_nodes: int) -> Tensor:
"""
Relabels the nodes in the graph to a contiguous range.
Args:
subset (Tensor): The subset of nodes.
edge_index (Tensor): The edge indices of the graph.
num_nodes (int): The number of nodes in the graph.
Returns:
Tensor: The relabeled edge indices.
"""
row, col = edge_index
node_idx = row.new_full((num_nodes, ), -1)
node_idx[subset] = torch.arange(subset.size(0), device=row.device)
edge_index = node_idx[edge_index]
return edge_index