Source code for stark_qa.skb.prime

import os
import os.path as osp
import pickle
import torch
import gdown
import zipfile
import json
import pandas as pd
from huggingface_hub import hf_hub_download
from tdc.resource import PrimeKG
from typing import Union

from stark_qa.skb.knowledge_base import SKB
from stark_qa.tools.process_text import compact_text, clean_dict
from stark_qa.tools.node import Node, register_node
from stark_qa.tools.io import save_files, load_files
from stark_qa.tools.download_hf import download_hf_file


DATASET = {
    "repo": "snap-stanford/stark",
    "raw": "skb/prime/raw.zip",
    "processed": "skb/prime/processed.zip",
}

[docs]class PrimeSKB(SKB): NODE_TYPES = [ 'disease', 'gene/protein', 'molecular_function', 'drug', 'pathway', 'anatomy', 'effect/phenotype', 'biological_process', 'cellular_component', 'exposure' ] RELATION_TYPES = [ 'ppi', 'carrier', 'enzyme', 'target', 'transporter', 'contraindication', 'indication', 'off-label use', 'synergistic interaction', 'associated with', 'parent-child', 'phenotype absent', 'phenotype present', 'side effect', 'interacts with', 'linked to', 'expression present', 'expression absent' ] META_DATA = ['id', 'type', 'name', 'source', 'details'] candidate_types = NODE_TYPES def __init__(self, root: Union[str, None] = None, download_processed: bool = True, **kwargs): """ Initialize the PrimeSKB class. Args: root (Union[str, None]): Root directory to store the dataset. If None, default HF cache paths will be used. download_processed (bool): Whether to download the processed data. """ self.root = root if download_processed: if (self.root is None) or (self.root is not None and not osp.exists(osp.join(root, "processed", 'node_info.pkl'))): processed_path = hf_hub_download(DATASET["repo"], DATASET["processed"], repo_type="dataset") if self.root is None: self.root = osp.dirname(processed_path) if not osp.exists(osp.join(self.root, "processed", 'node_info.pkl')): with zipfile.ZipFile(processed_path, 'r') as zip_ref: zip_ref.extractall(self.root) print(f"Extracting downloaded processed data to {self.root}") self.raw_data_dir = osp.join(self.root, "raw") self.processed_data_dir = osp.join(osp.join(self.root, "processed")) self.kg_path = osp.join(self.raw_data_dir, "kg.csv") self.meta_path = osp.join(self.raw_data_dir, "primekg_metadata_extended.pkl") if osp.exists(osp.join(self.processed_data_dir, 'node_info.pkl')): processed_data = load_files(self.processed_data_dir) print(f'Loading from {self.processed_data_dir}!') else: processed_data = self._process_raw() super(PrimeSKB, self).__init__(**processed_data, **kwargs) self.node_info = clean_dict(self.node_info) self.node_attr_dict = {} for node_type in self.node_type_lst(): attributes = [] for idx in self.get_node_ids_by_type(node_type): attributes.extend(self[idx].__attr__()) self.node_attr_dict[node_type] = list(set(attributes)) def _download_raw_data(self): """ Download the raw data if it does not already exist. """ zip_path = osp.join(self.root, 'raw.zip') if not osp.exists(self.kg_path): download_hf_file( DATASET["repo"], DATASET["raw"], repo_type="dataset", save_as_file=zip_path ) with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(self.root) os.remove(zip_path) def _process_raw(self): """ Process the raw data to construct the knowledge base. Returns: dict: Processed data. """ self._download_raw_data() print('Loading data... It might take a while') with open(self.kg_path, 'r') as rf: self.raw_data = pd.read_csv(rf) # Construct basic information for each node and edge node_info = {} node_type_dict = {} node_types = {} cnt_dict = {} ntypes = self.NODE_TYPES for idx, node_t in enumerate(ntypes): node_type_dict[idx] = node_t cnt_dict[node_t] = [0, 0, 0.0] for idx, node_id, node_type, node_name, source in zip( self.raw_data['x_index'], self.raw_data['x_id'], self.raw_data['x_type'], self.raw_data['x_name'], self.raw_data['x_source']): if idx in node_info.keys(): continue node_info[idx] = {'id': node_id, 'type': node_type, 'name': node_name, 'source': source} node_types[idx] = ntypes.index(node_type) cnt_dict[node_type][0] += 1 for item in zip(self.raw_data['y_index'], self.raw_data['y_id'], self.raw_data['y_type'], self.raw_data['y_name'], self.raw_data['y_source']): idx, node_id, node_type, node_name, source = item if idx in node_info.keys(): continue node_info[idx] = {'id': node_id, 'type': node_type, 'name': node_name, 'source': source} node_types[idx] = ntypes.index(node_type) cnt_dict[node_type][0] += 1 assert len(node_info) == max(node_types.keys()) + 1 node_types = [node_types[idx] for idx in range(len(node_types))] edge_index = [[], []] edge_types = [] edge_type_dict = {} rel_types = self.RELATION_TYPES for idx, edge_t in enumerate(rel_types): edge_type_dict[idx] = edge_t for head_id, tail_id, relation_type in zip( self.raw_data['x_index'], self.raw_data['y_index'], self.raw_data['display_relation']): edge_index[0].append(head_id) edge_index[1].append(tail_id) edge_types.append(rel_types.index(relation_type)) if relation_type not in edge_type_dict.values(): print('Unexpected new relation type', relation_type) edge_type_dict[len(edge_type_dict)] = relation_type edge_index = torch.LongTensor(edge_index) edge_types = torch.LongTensor(edge_types) node_types = torch.LongTensor(node_types) # Construct meta information for nodes with open(self.meta_path, 'rb') as f: meta = pickle.load(f) pathway_dict = meta['pathway'] pathway = {} for v in pathway_dict.values(): try: pathway[v['name'][0]] = v except: pass print('Constructing meta data for nodes...') print('Total number of nodes:', len(node_info)) for idx in node_info.keys(): tp = node_info[idx]['type'] if tp in ['disease', 'drug', 'exposure', 'anatomy', 'effect/phenotype']: continue elif tp in ['biological_process', 'molecular_function', 'cellular_component']: node_meta = meta[tp].get(node_info[idx]['id'], 'No meta data') elif tp == 'gene/protein': node_meta = meta[tp].get(node_info[idx]['name'], 'No meta data') elif tp == 'pathway': node_meta = pathway.get(node_info[idx]['name'], 'No meta data') else: print('Unexpected type:', tp) raise NotImplementedError if isinstance(node_meta, dict): filtered_node_meta = {k: v for k, v in node_meta.items() if v is not None and v != ['']} if filtered_node_meta == {}: continue else: node_info[idx]['details'] = filtered_node_meta cnt_dict[tp][1] += 1 elif node_meta == 'No meta data': continue elif isinstance(node_meta, str): try: assert node_meta == node_info[idx]['name'] except: print('Problematic:', node_meta, node_info[idx]['name']) else: raise NotImplementedError data = PrimeKG(path=self.raw_data_dir) drug_feature = data.get_features(feature_type='drug') disease_feature = data.get_features(feature_type='disease') drug_set = set() for i in range(len(drug_feature)): id = drug_feature.iloc[i]['node_index'] if id in drug_set: continue drug_set.add(id) cnt_dict['drug'][1] += 1 details_dict = drug_feature.iloc[i].to_dict() del details_dict['node_index'] node_info[id]['details'] = details_dict disease_set = set() for i in range(len(disease_feature)): id = disease_feature.iloc[i]['node_index'] if id in disease_set: continue disease_set.add(id) cnt_dict['disease'][1] += 1 details_dict = disease_feature.iloc[i].to_dict() del details_dict['node_index'] node_info[id]['details'] = details_dict for k, trip in cnt_dict.items(): cnt_dict[k] = (trip[0], trip[1], trip[1] * 1.0 / trip[0]) with open(osp.join(self.root, 'stats.json'), 'w') as df: print('Saving stats to', osp.join(self.root, 'stats.json')) json.dump(cnt_dict, df, indent=4) files = { 'node_info': node_info, 'edge_index': edge_index, 'edge_types': edge_types, 'edge_type_dict': edge_type_dict, 'node_types': node_types, 'node_type_dict': node_type_dict } print(f'Saving to {self.processed_data_dir}...') save_files(save_path=self.processed_data_dir, **files) return files def __getitem__(self, idx): """ Get the node at the specified index. Args: idx (int): Index of the node. Returns: Node: The node at the specified index. """ idx = int(idx) node_info = self.node_info[idx] node = Node() register_node(node, node_info) return node
[docs] def get_doc_info(self, idx, add_rel=True, compact=False, n_rel=-1) -> str: """ Get document information for the specified node. Args: idx (int): Index of the node. add_rel (bool): Whether to add relationship information. compact (bool): Whether to compact the text. n_rel (int): Number of relationships to add. Returns: str: Document information. """ node = self[idx] node_info = self.node_info[idx] doc = f'- name: {node.name}\n' doc += f'- type: {node.type}\n' doc += f'- source: {node.source}\n' gene_protein_text_explain = { 'name': 'gene name', 'type_of_gene': 'gene types', 'alias': 'other gene names', 'other_names': 'extended other gene names', 'genomic_pos': 'genomic position', 'generif': 'PubMed text', 'interpro': 'protein family and classification information', 'summary': 'protein summary text' } feature_text = f'- details:\n' feature_cnt = 0 if 'details' in node_info.keys(): for key, value in node_info['details'].items(): if str(value) in ['', 'nan'] or key.startswith('_') or '_id' in key: continue if node.type == 'gene/protein' and key in gene_protein_text_explain.keys(): if 'interpro' in key: if isinstance(value, dict): value = [value] value = [v['desc'] for v in value] if 'generif' in key: value = '; '.join([v['text'] for v in value]) value = ' '.join(value.split(' ')[:50000]) if 'genomic_pos' in key: if isinstance(value, list): value = value[0] feature_text += f' - {key} ({gene_protein_text_explain[key]}): {value}\n' feature_cnt += 1 else: feature_text += f' - {key}: {value}\n' feature_cnt += 1 if feature_cnt == 0: feature_text = '' doc += feature_text if add_rel: doc += self.get_rel_info(idx, n_rel=n_rel) if compact: doc = compact_text(doc) return doc
[docs] def get_rel_info(self, idx: int, rel_types: Union[list, None] = None, n_rel: int = -1) -> str: """ Get relation information for the specified node. Args: idx (int): Index of the node. rel_types (Union[list, None]): List of relation types or None if all relation types are included. n_rel (int): Number of relations. Default is -1 if all relations are included. Returns: doc (str): Relation information. """ doc = '' rel_types = self.rel_type_lst() if rel_types is None else rel_types for edge_t in rel_types: node_ids = torch.LongTensor(self.get_neighbor_nodes(idx, edge_t)) if len(node_ids) == 0: continue doc += f"\n {edge_t.replace(' ', '_')}: " + "{" node_types = self.node_types[node_ids] for node_type in set(node_types.tolist()): neighbors = [] doc += f'{self.node_type_dict[node_type]}: ' node_ids_t = node_ids[node_types == node_type] if n_rel > 0: node_ids_t = node_ids_t[torch.randperm(len(node_ids_t))[:n_rel]] for i in node_ids_t: neighbors.append(f'{self[i].name}') neighbors = '(' + ', '.join(neighbors) + '),' doc += neighbors doc += '}' if len(doc): doc = '- relations:' + doc return doc