Source code for stark_qa.skb.knowledge_base

import numpy as np
import torch
from torch_geometric.utils import is_undirected, to_undirected

from stark_qa.tools.graph import k_hop_subgraph
from stark_qa.tools.node import Node, register_node


[docs]class SKB: def __init__(self, node_info: dict, edge_index: torch.LongTensor, node_type_dict=None, edge_type_dict=None, node_types=None, edge_types=None, indirected=True, **kwargs): """ Initialize the SKB dataset for semi-structured data. Args: node_info (Dict[dict]): A meta dictionary where each key is node ID and each value is a dictionary containing information about the corresponding node. edge_index (torch.LongTensor): Edge index in the PyG format. node_type_dict (dict): Meta dictionary where each key is node ID (if node_types is None) or node type (if node_types is not None) and each value dictionary contains information about the node of the node type. edge_type_dict (dict): Meta dictionary where each key is edge ID (if edge_types is None) or edge type (if edge_types is not None) and each value dictionary contains information about the edge of the edge type. node_types (torch.LongTensor): Node types. edge_types (torch.LongTensor): Edge types. indirected (bool): Whether to make the graph undirected. **kwargs: Additional arguments. """ self.node_info = node_info self.edge_index = edge_index self.edge_type_dict = edge_type_dict self.node_type_dict = node_type_dict self.node_types = node_types self.edge_types = edge_types if indirected and not is_undirected(self.edge_index): self.edge_index, self.edge_types = to_undirected( self.edge_index, self.edge_types, num_nodes=self.num_nodes(), reduce='mean' ) self.edge_types = self.edge_types.long() self.candidate_ids = self.get_candidate_ids() if hasattr(self, 'candidate_types') else [i for i in range(len(self.node_info))] self.num_candidates = len(self.candidate_ids) self._build_sparse_adj() def __len__(self): """Return the number of nodes.""" return len(self.node_info) def __getitem__(self, idx): """Get the node by index.""" idx = int(idx) node = Node() register_node(node, self.node_info[idx]) return node
[docs] def get_doc_info(self, idx, add_rel=False, compact=False) -> str: """ Return a text document containing information about the node. Args: idx (int): Node index. add_rel (bool): Whether to add relational information explicitly. compact (bool): Whether to compact the text. """ raise NotImplementedError
def _build_sparse_adj(self): """Build the sparse adjacency matrix.""" self.sparse_adj = torch.sparse.FloatTensor( self.edge_index, torch.ones(self.edge_index.shape[1]), torch.Size([self.num_nodes(), self.num_nodes()]) ) self.sparse_adj_by_type = {} for edge_type in self.rel_type_lst(): edge_idx = torch.arange(self.num_edges())[self.edge_types == self.edge_type2id(edge_type)] self.sparse_adj_by_type[edge_type] = torch.sparse.FloatTensor( self.edge_index[:, edge_idx], torch.ones(edge_idx.shape[0]), torch.Size([self.num_nodes(), self.num_nodes()]) )
[docs] def get_rel_info(self, idx, rel_type=None) -> str: """ Return a text document containing information about the node. Args: idx (int): Node index. rel_type (str, optional): Relation type. """ raise NotImplementedError
[docs] def get_candidate_ids(self) -> list: """Get the candidate IDs.""" assert hasattr(self, 'candidate_types') candidate_ids = np.concatenate( [self.get_node_ids_by_type(candidate_type) for candidate_type in self.candidate_types] ).tolist() candidate_ids.sort() return candidate_ids
[docs] def num_nodes(self, node_type_id=None): """Return the number of nodes.""" return len(self.node_types) if node_type_id is None else sum(self.node_types == node_type_id)
[docs] def num_edges(self, node_type_id=None): """Return the number of edges.""" return len(self.edge_types) if node_type_id is None else sum(self.edge_types == node_type_id)
[docs] def rel_type_lst(self): """Return the list of relation types.""" return list(self.edge_type_dict.values())
[docs] def node_type_lst(self): """Return the list of node types.""" return list(self.node_type_dict.values())
[docs] def node_attr_dict(self): """Return the node attribute dictionary.""" raise NotImplementedError
[docs] def is_rel_type(self, edge_type: str): """Check if the edge type is a relation type.""" return edge_type in self.rel_type_lst()
[docs] def edge_type2id(self, edge_type: str) -> int: """Get the edge type ID given the edge type.""" try: idx = list(self.edge_type_dict.values()).index(edge_type) except ValueError: raise ValueError(f"Edge type {edge_type} not found") return list(self.edge_type_dict.keys())[idx]
[docs] def node_type2id(self, node_type: str) -> int: """Get the node type ID given the node type.""" try: idx = list(self.node_type_dict.values()).index(node_type) except ValueError: raise ValueError(f"Node type {node_type} not found") return list(self.node_type_dict.keys())[idx]
[docs] def get_node_type_by_id(self, node_id: int) -> str: """Get the node type given the node ID.""" return self.node_type_dict[self.node_types[node_id].item()]
[docs] def get_edge_type_by_id(self, edge_id: int) -> str: """Get the edge type given the edge ID.""" return self.edge_type_dict[self.edge_types[edge_id].item()]
[docs] def get_node_ids_by_type(self, node_type: str) -> list: """Get the node IDs given the node type.""" return torch.arange(self.num_nodes())[self.node_types == self.node_type2id(node_type)].tolist()
[docs] def get_node_ids_by_value(self, node_type, key, value) -> list: """Get the node IDs given the node type and the value of a specific attribute.""" ids = self.get_node_ids_by_type(node_type) indices = [idx for idx in ids if hasattr(self[idx], key) and getattr(self[idx], key) == value] return indices
[docs] def get_edge_ids_by_type(self, edge_type: str) -> list: """Get the edge IDs given the edge type.""" return torch.arange(self.num_edges())[self.edge_types == self.edge_type2id(edge_type)].tolist()
[docs] def sample_paths(self, node_types: list, edge_types: list, start_node_id=None, size=1) -> list: """ Sample paths given the node types and edge types. Use "*" to indicate any edge type. """ assert len(node_types) == len(edge_types) + 1 for i in range(len(edge_types)): if edge_types[i] != "*": assert (node_types[i], edge_types[i], node_types[i+1]) in self.get_tuples(), \ f"{(node_types[i], edge_types[i], node_types[i+1])} invalid" paths = [] while len(paths) < size: p = [] for i in range(len(node_types)): if i == 0: node_idx = start_node_id if start_node_id is not None else np.random.choice(self.get_node_ids_by_type(node_types[i])) else: neighbor_nodes = self.get_neighbor_nodes(node_idx, edge_types[i-1]) neighbor_nodes = torch.LongTensor(neighbor_nodes) node_type_id = self.node_type2id(node_types[i]) neighbor_nodes = neighbor_nodes[self.node_types[neighbor_nodes] == node_type_id].tolist() if len(neighbor_nodes) == 0: if i == 1 and start_node_id is not None: return [] else: break node_idx = np.random.choice(neighbor_nodes) p.append(node_idx) if len(p) == len(node_types): paths.append(p) return paths
[docs] def get_all_paths(self, start_node_id: int, node_types: list, edge_types: list, max_num=None, direction='in-and-out') -> list: """ Get all paths given the node types and edge types. Use "*" to indicate any edge type. """ assert len(node_types) == len(edge_types) + 1 paths = [] neighbor_nodes = self.get_neighbor_nodes(start_node_id, edge_types[0]) neighbor_nodes = torch.LongTensor(neighbor_nodes) node_type_id = self.node_type2id(node_types[1]) neighbor_nodes = neighbor_nodes[self.node_types[neighbor_nodes] == node_type_id].tolist() if len(neighbor_nodes) == 0: return [] elif len(node_types) == 2: return [[start_node_id, node_idx] for node_idx in neighbor_nodes] else: for iter_start_node_id in neighbor_nodes: subpaths = self.get_all_paths(iter_start_node_id, node_types[1:], edge_types[1:]) if subpaths: for subpath in subpaths: paths.append([start_node_id] + subpath) if max_num is not None and len(paths) > max_num: return paths return paths
[docs] def get_tuples(self) -> list: """Get all possible tuples of node types and edge types.""" col, row = self.edge_index.tolist() edge_types = self.edge_types.tolist() col_types, row_types = self.node_types[col].tolist(), self.node_types[row].tolist() tuples_by_id = set([(n_i, e, n_j) for n_i, e, n_j in zip(col_types, edge_types, row_types)]) tuples = [(self.node_type_dict[n_i], self.edge_type_dict[e], self.node_type_dict[n_j]) for n_i, e, n_j in tuples_by_id] tuples = list(set(tuples)) tuples.sort() return tuples
[docs] def get_neighbor_nodes(self, idx, edge_type: str = "*") -> list: """ Get the neighbor nodes given the node ID and the edge type. Args: idx (int): Node index. edge_type (str): Edge type, use "*" to indicate any edge type. """ if edge_type == "*": neighbor_nodes = self.sparse_adj[idx].coalesce().indices().view(-1).tolist() else: neighbor_nodes = self.sparse_adj_by_type[edge_type][idx].coalesce().indices().view(-1).tolist() return neighbor_nodes
[docs] def k_hop_neighbor(self, node_idx, num_hops, **kwargs): """ Get the k-hop neighbor subgraph. Args: node_idx (int): Node index. num_hops (int): Number of hops. **kwargs: Additional arguments. """ subset, edge_index, _, edge_mask = k_hop_subgraph( node_idx, num_hops, self.edge_index, num_nodes=self.num_nodes(), flow='bidirectional', **kwargs ) node_types = self.node_types[subset] edge_types = self.edge_types[edge_mask] return subset, edge_index, node_types, edge_types